Label-Free Cell-based Assay for Drug Discovery using the Corning Epic® System and Corning HYPER Flask® Cell Culture Vessel

Lori Romeo, Jeff Scibek, Arron Xu, Kim Titus and Todd Upton, Corning Life Sciences, Corning Inc., Corning, NY 14830; Ralph Garippa, Theresa Truitt and Rachid Hamid. Hoffmann-La Roche, Nutley, NJ

Introduction

CORNING

Abstract

The Corning Epic® technology is an optical resonant waveguide-based, label-free detection system. It provides a label-free platform of high detection sensitivity for measuring both molecular interactions in a biochemical assay, as well as integrated cellular responses in a cell-based assay. Detection of live cell and time dependent cellular response in a pathway unbiased manner with the Epic® system may provide previously unattainable biological and pharmacological information for an integrated drug-stimulated cellular response. Moreover, the Epic system is capable of performing primary screening in both biochemical and cell based assays meeting a throughout requirement of approximately 80 384-well microplates/8 hr run. To support the demand of cells for HTS cell-based assays, the Corning HYPER Flask® vessel provides a solution with high capacity and high efficiency for cell culture with each HYPER Flask® vessel providing the number of cells equivalent to that from 10 standard T-175 flasks. The study reported here describes the successful use of the Epic system for a labelfree screening to discover agonists targeting serotonin receptors in a cell-based GPCR assay. It is also demonstrated that the cells cultured in the conventional T-flask and those in the HYPER Flask® vessel show highly similar assay performance, thus further supporting the use of HYPERFlask® vessel for HTS cell-based assavs.

Background

The Corning Epic® technology provides a label-free detection system that measures integrated cellular response in a cell-based assay or molecular interaction response in a biochemical assay, It enables high throughput screening for drug discovery in a label-free format with robust signal detection and sensitivity. Cell-based high throughput screens require a large supply of cells that often present challenges for conventional cell culture techniques. Conventional cell culture requires numerous T-flasks, significant incubator space and a high demand for skilled labor, resulting in substantial costs. The Corning HYPERFlask® vessel provides a solution to the need of high capacity cell culture in support of cell-based HTS screen with its novel design. We present here a comparative study of Epic® assay performance using cells cultured in a HYPERFlask® vessel and conventional T-150 flasks. The Epic® results demonstrated highly similar performance with cells cultured in the HYPERFlask® vessel and in conventional T-flasks. Results of this study showed a significant sayings in materials, time and labor costs with equivalent assay performance.

Materials & Methods

Cell Seeding

- HYPERFlask vessels and T-150 flasks were seeded with 1x10⁴ cells/cm² with engineered CHO cells
- Flasks were incubated at 37°C with 5% CO₂
- Cells were grown for 72 hours at which time they were ~ 90% confluent

Harvoeting

- Cells were harvested using Trypsin-EDTA
- Cell Yields:
- HYPER Flask® vessel: 2.6x108 cells per vessel (1.5x105 cells/cm2)
- T-150 Flask: 0.22x108 cells per flask (1.5x105 cells/cm2)

Plate Seeding:

Fibronectin-coated Epic® microplates were seeded with 7,500 cells/well using a Multi-Drop Combi

Assay Flowchart

Results

Figure 1: Dose-dependent response of engineered CHO cells stimulated with serotonin. Left panels: Epic® response profiles for engineered CHO cells stimulated with a dilution series of serotonin. Serotonin concentration range: $0.3 \text{nM} - 5 \mu \text{M}$. Arrow indicates the point of compound addition. Right panel: Dose-response curves and EC $_{60}$ values from Epic response profiles.

Figure 2: Representative cell-based screening data for engineered CHO cells cultured on a T-150 flask or HYPERFlask® vessel.

Compounds were screened at 5µM. Left panel: Scatter plot for cells from T-150 flasks. Right panel: Scatter plot for HYPERFlask® vessels. Red circle: Negative control (sassy buffer, N=16) Green circle: Positive control (Serotonin, EC₃₀ concentration, N=16). The threshold was set at 40% of the response of the positive control. The same 5 compounds were identified as hits on both platforms. Z'> 0.7

Figure 3: Agonist dose-response curves for a subset of the compounds that were identified as hits during the cell-based screen. A dilution series of each compound was added to the cells and the response was measured at 20 minutes. Concentration range: 0.2nM – 12 5n/M

Figure 4: Inhibition curves for a subset of the compounds that were identified as agonist hits during the cell-based screen.

A dilution series of each compound was added to the cells and the cells were incubated for $^{-3}$ O minutes. An EC $_{\rm SS}$ concentration of serotonin was added to the cells and the response was measured after an additional 20 minutes. Compound #5 inhibits the serotonin response most likely due to receptor desensitization. Compounds #2 and #6 do not inhibit the serotonin response. These compounds may be targeting other endogenously expressed receptors on the engineered CHO cells (not the serotonin receptor).

Table 1: Summary of ECso and ICso values measured on the Epic® System

	EC _{so} (nM)			IC _{so} (nM)	
		HYPERFlask®			HYPERFIas
Compound	T-150	Vessel	Compound	T-150	Vessel
1	5	10	1	5	10
2	539	578	2	No inhibition	No inhibit
3	1006	964	3	No inhibition	No inhibiti
4	126	76	4	No inhibition	No inhibiti
5	19	16	5	20	23
6	78	77	6	No inhibition	No inhibit
7	>10000	>10000	7	No inhibition	No inhibit
8	436	480	8	382	705
9	800	1006	9	No inhibition	No inhibit
10	776	1154	10	No inhibition	No inhibit
11	352	417	11	146	264
12	>10000	>10000	12	2491	3248
13	233	309	13	No inhibition	No inhibit
14	54	57	14	30	43
15	375	570	15	No inhibition	No inhibit
16	585	530	16	No inhibition	No inhibiti

- EC_{eo} and IC_{eo} values were calculated using GraphPad Prism.
- Similar EC₅₀ and IC₅₀ values were observed for the all compounds tested.
- . Dose-response curves for compounds 2, 5, and 6 are shown in Figures 3 and 4.

Summary and Conclusions:

- * Cells cultured on the HYPER Flask® vessel and a T-150 flask exhibited similar morphology and Epic assay performance.
- Epic response profiles, EC₅₀ values and assay robustness (Z'>0.7) for cells from both vessels are in good agreement.
- * The same compounds were identified as hits during the agonist cell-based screen with both sets of cells.
- The HYPER Flask® vessel can be used to replace multiple T-flasks for cell-based high throughput screening with no compromise to the results of the assay
- Using the HYPER Flask® vessel will:
 - Increase cell yield
 Decrease labor costs
 - Generate less waste
 Require less incubator space
- Results demonstrated that Epic can be used as a robust label-free screening tool for high throughput drug discovery.
- * The combination of the HYPERFlask® vessel and Epic provides a highly efficient and robust platform for high throughput cell-based screening in a label-free format.