HighPrep™ Blood & Tissue DNA Kit Manual Revision v1.1 Catalog Nos. HPBTS-D16, HPBTS-D96, HPBTS-D96X4 - Genomic DNA isolation from 20-250 µl of blood, lysate of tissues, mouse tails, cultured cells, or buccal swabs - Magnetic beads based chemistry # **PROTOCOL** ### **Contents** | Product Description and Process | 1 | |---|----| | Kit Contents, Storage, Stability | 1 | | Preparation of Reagents | 2 | | Blood or Saliva DNA 20 -100 μL - 96 well protocol | 3 | | Blood or Saliva DNA 100-250 μL - 96 well protocol | 5 | | Total DNA from Tissue - 96 well protocol | 8 | | Total DNA from Mouse Tail - 96 well protocol | 10 | | Total DNA from Cultured Cells - 96 well protocol | 12 | | Total DNA from Buccal Swabs - 96 well protocol | 14 | For Research Use Only. Not for use in diagnostic procedures. Information in this document is subject to change without notice. MAGBIO GENOMICS, INC. DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TO THE FULLEST EXTENT ALLOWED BY LAW, IN NO EVENT SHALL MAGBIO GENOMICS, INC. BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF, WHETHER OR NOT FORESEEABLE AND WHETHER OR NOT MAGBIO GENOMICS, INC. IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. #### **TRADEMARKS** ### **Product Description** The HighPrep™ Blood-Tissue DNA Kit is a high quality genomic purification kit for a variety of sample sources including: 20-250 µL fresh or frozen whole blood, buffy coat containing anticoagulants such as Citrate, EDTA and Heparin, DNA from saliva samples, fresh or frozen animal tissues and cells. Up to 96 samples of tissues can be processed in less than an hour. The kit utilizes our proprietary magnetic beads chemistry and requires no phenol or chloroform extraction or alchohol precipitation and is suited for high throughput automation. The purified high quality genomic DNA is suitable for direct use in most downstream applications such as amplification and enzymatic reactions. #### **Process** The HighPrep™ Blood & Tissue DNA Kit uses a simple 3 step procedure: Lyse+Bind-Wash-Elute. Samples are lysed and DNA binds to the MAG-S1 magnetic beads in one step. Utilizing a magnetic separation device, the bound genomic DNA is separated from the solution and is washed. The final step is elution of high quality genomic DNA from the magnetic beads. ### **Kit Contents and Storage** | HighPrep™ Blood & Tissue DNA Kit
Catalog No. | HPBTS-D16 | HPBTS-D96 | HPBTS-D96X4 | STORAGE | |---|-----------|-----------|-------------|---------| | Number of Preps | 16 | 96 | 384 | | | AS Buffer | 6 ml | 33 ml | 125 ml | 15-25°C | | TS Buffer | 8 ml | 40 ml | 160 ml | 15-25°C | | HSW Buffer ¹ | 5.5 ml | 22 ml | 88 ml | 15-25°C | | MB Elution Buffer | 8 ml | 40 ml | 120 ml | 15-25°C | | Pro K Solution ² | 500 μl | 2.5 ml | 10 ml | 15-25°C | | MAG-S1 Particles | 250 μΙ | 1.1 ml | 4.4 ml | 2-8°C | ¹ Ethanol must be added prior to use. See Preparation of Reagents ## **Stability** All components are stable for 12 months when stored accordingly. ## **Safety Information** When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs). MSDS can be downloaded from the "Product Resource" tab when viewing the product kit. ²Pro K Solution comes in a ready to use solution. Component is stable for 1 year when stored at 15-25°C. For storage longer than 1 year, storage at 2-8°C is recommended. # **Preparation of Reagents** Prepare the following components for each kit before use: | Catalog No. | Component | Add
100% Ethanol | Storage | |------------------|--------------------------|----------------------|----------------------| | HPBTS-D16 | HSW Buffer | 7 ml | Room Temp
15-25°C | | Components are s | table for 1 year when st | tored closed at room | temperature | | Catalog No. | Component | Add
100% Ethanol | Storage | |---|------------|---------------------|----------------------| | HPBTS-D96 | HSW Buffer | 28 ml | Room Temp
15-25°C | | Components are stable for 1 year when stored closed at room temperature | | | | | Catalog No. | Component | Add
100% Ethanol | Storage | |---|------------|---------------------|----------------------| | HPBTS-D96X4 | HSW Buffer | 112 ml | Room Temp
15-25°C | | Components are stable for 1 year when stored closed at room temperature | | | | # **Amounts of starting material** Use the amounts of starting material indicated in Table 1. | Blood Sample | Amount | |---------------------|-----------| | Blood | 20-250 μL | | Buffy coat | 20-250 μL | | Saliva | 20-250 μL | | Tissue Sample | Amount | | Most tissue samples | 10 mg | | Spleen | 5 to 6 mg | ### HighPrep™ Blood & Tissue DNA Kit: 20 -100 μL - 96 format ### The following protocol can be applied for saliva samples. ### **Equipment and Reagents to Be Supplied by User** When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs) from each product supplier. | | 500 μL 96-well round bottom plate or desired elution plate 1.2 mL deep-well plate 96 magnetic separation device for 1.2 mL deep well plate Sealing film for storage 70% Ethanol 100% Ethanol Optional phosphate-buffered saline (PBS) or nuclease-free water may be required Optional RNase A (10 mg/mL) | |----|--| | TI | nings to do before starting | | | | - 1. Add 20 -100 μ L sample to well of 1.2 mL deep-well plate. Bring sample volume up to 200 μ L with PBS or with included MB Elution Buffer. - 2. Add 20 µL Pro K Solution to the sample and pipette mix 20 times or vortex for 15 sec. - 3. Optional: Add 5 µL RNase A to the sample and pipette mix 20 times or vortex for 15 sec. - 4. Add 200 μL AS Buffer to the sample and pipette mix 20 times. - 5. Incubate sample plate at 65°C for 30 min. Mix the sample once during the incubation. - 6. Bring sample plate to room temperature. - 7. Add 300 μ L 100 % ethanol and 10 μ L MAG-S1 particles to the sample, and pipette mix 20 times. | Λ | Shake thoroughly the MAG-S1 particles to fully resuspend before use. | |--------------|--| | <u>/ • \</u> | shake thoroughly the MAG-51 particles to fully resuspend before use. | - 8. Incubate the sample plate at room temperature for 5 min. - 9. Transfer 360 μ L of the sample to a new 96 well processing microplate with a capacity of at least 500 μ L. - 10. Place the sample processing plate containing the sample on the magnetic separation device for 5 min to magnetize the MAG-S1 particles. - 12. Remove the sample processing plate from the magnetic separation device. Repeat steps 9 to 11 until all the sample from the 1.2mL sample plate is transferred to the new sample processing plate. - 13. With the plate off the magnetic separation device, add 400 µL HSW Buffer to the sample and mix by pipetting 25 times or vortex for 1 min to resuspend the MAG-S1 particles. - Complete resuspension of the MAG-S1 particles is crucial for obtaining purity. - 14. Place the sample plate back on the magnetic separation device and wait 5 min or until the magnetic beads clear from solution. - 15. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. Do not disturb the attracted beads while aspirating the supernatant. - 16. Remove the plate off the magnetic separation device, add 400 μL 70% ethanol to the sample and mix by pipetting 25 times or vortex for 1 min to resuspend the MAG-S1 particles. - 17. Incubate at room temperature for 1 min. - 18. Place the sample processing plate containing the sample on the magnetic separation device for 5 min to magnetize the MAG-S1 particles. - 19. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. - 20. Repeat steps 16 to 18 for a second ethanol wash. - 21. Dry the beads by incubating for 10 min at room temperature with the plate still on the magnetic separation device. Do not overdry the beads. - 22. Remove the plate from the magnetic separation device. Add 100-200 μL MB Elution Buffer or nuclease-free water to the sample and mix 50 times or vortex for 2 min to completely resuspend the MAG-S1 particles. - ⚠ Complete resuspension of the MAG-S1 particles is crucial for obtaining high purity. - 23. Incubate at room temperature for 10 min. - 24. Place the sample plate back on the magnetic separation device and wait 5 min or until the magnetic beads clear from solution. - 25. Transfer the eluate (cleared supernatant containing the DNA) to a microplate for storage. Store DNA at -20°C. ### HighPrep™ Blood & Tissue DNA Kit: 100 - 250 μL - 96 format The following protocol can be applied for saliva samples. # **Equipment and Reagents to Be Supplied by User** When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs) from each product supplier. | | 500 μL 96-well round bottom plate or desired elution plate | |----|---| | | 1.2 mL deep-well plate | | | 96 magnetic separation device for 1.2 mL deep well plate | | | Sealing film for storage | | | 70% Ethanol | | | 100% Ethanol | | | Optional phosphate-buffered saline (PBS) or nuclease-free water may be required | | | Optional RNase A (10 mg/mL) | | | | | | | | Γh | nings to do before starting | | | 3 | | | Equilibrate samples to room temperature. | | | Ensure HSW Buffer is prepared according to the instructions on page 2 and is at room temperature. | | | AS Buffer may show precipitates during storage. If precipitates are present, heat bottle to 37°C to | | | dissolve the precipitates before use. | | | | - 1. Add 100-250 μ L of sample to a well of 1.2 mL deep-well plate. Bring sample volume up to 300 μ L with PBS or with included MB Elution Buffer. - 2. Add 20 µL Pro K Solution to the sample and pipette mix 20 times or vortex for 15 sec. - 3. Optional: Add 5 µL RNase A to the sample and pipette mix 20 times or vortex for 15 sec. - 4. Add 300 µL AS Buffer to the sample and pipette mix 20 times. - 5. Incubate sample plate at 65°C for 30 min. Mix the sample once during the incubation. - 6. Bring sample plate to room temperature. - 7. Add 430 μ L 100% ethanol and 10 μ L MAG-S1 particles to the sample, and pipette mix 20 times. - \triangle Shake thoroughly the MAG-S1 particles to fully resuspend before use. - 8. Incubate the sample plate at room temperature for 5 min. - 9. Transfer 360 μ L of the sample to a new 96 well processing microplate with a capacity of at least 500 μ L. - 10. Place the sample processing plate containing the sample on the magnetic separation device for 5 min to magnetize the MAG-S1 particles. - 12. Remove the sample processing plate from the magnetic separation device. Repeat steps 9 to 11 until all the sample from the 1.2mL sample plate is transferred to the new sample processing plate. - 13. With the plate off the magnetic separation device, add 400 µL HSW Buffer to the sample and mix by pipetting 25 times or vortex for 1 min to resuspend the MAG-S1 particles. - Complete resuspension of the MAG-S1 particles is crucial for obtaining purity. - 14. Place the sample plate back on the magnetic separation device and wait 5 min or until the magnetic beads clear from solution. - 15. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. O not disturb the attracted beads while aspirating the supernatant. - 16. Remove the plate off the magnetic separation device, add 400 µL 70% ethanol to the sample and mix by pipetting 20 times or vortex for 1 min to resuspend the MAG-S1 particles. - 17. Incubate at room temperature for 1 min. - 18. Place the sample processing plate containing the sample on the magnetic separation device for 5 min to magnetize the MAG-S1 particles. - 19. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. - 20. Repeat steps 16 to 18 for a second ethanol wash. - 21. Dry the beads by incubating for 10 min at room temperature with the plate still on the magnetic separation device. - 22. Remove the plate from the magnetic separation device. Add 100-200 μL MB Elution Buffer or nuclease-free water to the sample and mix 50 times or vortex for 2 min to completely resuspend the MAG-S1 particles. - ⚠ Complete resuspension of the MAG-S1 particles is crucial for obtaining purity. - 23. Incubate at room temperature for 10 min. - 24. Place the sample plate back on the magnetic separation device and wait 5 min or until the magnetic beads clear from solution. - 25. Transfer the eluate (cleared supernatant containing the DNA) to a microplate for storage. Store DNA at -20°C. # **Troubleshooting guide** Please use this guide to troubleshoot any problems that may arise. For further assistance, please contact technical support via: Phone: 1-855-262-4246 (in US), outside US, 1-301-302-0144 Email: support@magbiogenomics.com | Symptoms | Possible Causes | Comments | |--|---|---| | | Frozen samples not mixed properly after thawing | Thaw the frozen sample at room temperature and gently mix the sample by inverting. | | | Blood is too old | Best yields are obtained from fresh blood. | | | Low levels of leukocytes | Low white blood cells count will give reduced yield. | | Low DNA yield | Incomplete resuspension of MAG-S1 particles | Resuspend MAG-S1 particles by vortexing vigorously before use. | | | Loss of MAG-S1 particles during operation | Avoid disturbing the MAG-S1 particles during aspiration of supernatant. | | | DNA remains bound to
MAG-S1 particles | Increase elution volume and incubate for 15 minutes. Pipet up and down 50 to 100 times. | | | Ethanol is not added into
HSW Buffer | Add absolute 100% Ethanol to HSW Buffer (see page 2 for instructions). | | MAG-S1 particles
do not completely
clear from solution | Too short of magnetizing time | Increase collection time on the magnet. | | Eluted DNA contains gelatinous material | Blood is too old | Remove the gelatinous material by centrifugation. Recommend using fresh blood. | | material | | Use 8 mM NaOH as elution buffer. | | Problems in downstream applications | Ethanol carry-over | Dry the MAG-S1 particles completely before elution. | ### **Protocol: Total DNA from Animal Tissues - 96 format** ### **Equipment and Reagents to Be Supplied by User** When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs) from each product supplier. | | 96 well round-bottom deep well plates with a capacity of 1 mL per well. (ABgene AB-1127) | |----|--| | | Magnetic separation device compatible with 96-well plate | | | Centrifuge with swing bucket rotor capable of 4,000 x g | | | Shaking water bath | | | Vortexer | | | 70% ethanol | | | 100% ethanol | | | Optional RNase A (10 mg/mL) | | | | | ГL | in as to do before stouting | | In | ings to do before starting | | | Ensure HSW Buffer is prepared according to the instructions on page 2 and is at room temperature | | | Warm up MB Elution Buffer (50-250 µl) per sample depending on elution volume) to 70°C | | | Set shaking water bath to 55°C | | | AS Buffer and TS Buffer may show precipitates during storage. If precipitates are present, heat | | | bottle to 37°C to dissolve the precipitates before use. | | | | #### **Protocol** Place up to 10 mg of tissue into a well of a 96 deep-well plate. Add 250 μl TS Buffer. Note: Cutting/mincing the tissue into smaller pieces can speed up the lysis process. Optional. To improve lysis and reduce incubation time, pulverize sample to fine powder in liquid nitrogen. For spleen tissue, use 5-6 mg. This will reduce the thickness of the gDNA extracted solution and allow a more efficient wash and ultimately a better quality extracted DNA. 2. Add 20 μ l Pro K Solution to each sample well. Seal the plate and vortex to mix well and incubate at 55°C in a shaking water bath overnight. Overnight lysis is recommended for optimal yield. Alternatively, lysis can be perform in 2-4 hours depending on the amount and tissue type. If a shaking water bath is not available, vortex the plate every 20-30 min. 3. Quickly spin plate for 20 sec to collect liquid. For tissues samples containing material that cannot be digested during the lysis step, centrifuge the plate at maximum speed for 5 min to pellet the undigested materials. Transfer the clear lysate on top to a new processing plate. 4. Optional: Add 5 μ l RNase A to each sample well. Pipette mix for 20 times or vortex for 15 sec. - 5. Add 200 μl AS Buffer to the sample and pipette mix for 20 times or vortex for 15 sec and incubate at 70°C for 10 min. - 6. Bring sample plate to room temperature and add 290 μl 100 % ethanol and 10 μl MAG-S1 particles to the sample, and pipette mix for 25 times. Incubate at room temperature for 5 min. - ↑ Shake thoroughly the MAG-S1 particles to fully resuspend before use. - 7. Place the sample plate on the magnetic separation device to magnetize the MAG-S1 particles and wait 3 min or until the beads clear from the solution. - 8. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. ① Do not disturb the attracted beads while aspirating the supernatant. - 9. Remove the plate from the magnetic separation device. Add 400 μl HSW Buffer to the sample and pipette mix 25 times or vortex for 30 sec to resuspend the MAG-S1 particles. - Complete resuspension of the Mag-S1 particles is crucial for obtaining purity. - 10. Place the sample plate back on the magnetic separation device and wait 5 min or until the magnetic beads clear from solution. - 11. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. 1 Do not disturb the attracted beads while aspirating the supernatant. - 12. Remove the sample plate from the magnetic device. Add 400 μl of 70% ethanol to the sample and pipette mix 25 times or vortex for 1 min to resuspend the MAG-S1 particles. Incubate at room temperature for 3 min. - 13. Place the sample plate back on the magnetic separation device and wait 3 min or until the magnetic beads clear from solution. - 14. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. ① Do not disturb the attracted beads while aspirating the supernatant. - 15. Repeat steps 12-14 for a second 70% ethanol wash. - 16. Dry the beads by incubating for 10 min at room temperature with the plate still on the magnetic separation device. ! It is critical to completely remove all liquid from each well. - 17. Remove the plate from the magnetic separation device. Add 50-200 μl MB Elution Buffer or nuclease-free water to the sample and pipette mix 50 times or vortex for 2 min to completely resuspend the MAG-S1 particles. - (1) Complete resuspension of the MAG-S1 particles is crucial for obtaining high purity. - **18. Incubate at room temperature for 10 min.** Incubation at 70°C can increase yield. - 19. Place the sample plate back on the magnetic separation device and wait 5 min or until the magnetic beads clear from solution. - 20. Transfer the eluate (cleared supernatant containing the DNA) to a microplate for storage. Store DNA at -20°C. ### **Protocol: Total DNA from Mouse Tail - 96 format** ### **Equipment and Reagents to Be Supplied by User** When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs) from each product supplier. | | 96 well round-bottom deep well plates with a capacity of 1 mL per well. (ABgene AB-1127) Magnetic separation device compatible with 96-well plate Centrifuge with swing bucket rotor capable of 4,000 x g Shaking water bath Vortexer 70% ethanol 100% ethanol Optional RNase A (10 mg/mL) | |----|--| | Γh | nings to do before starting | | | Ensure HSW Buffer is prepared according to the instructions on page 2 and is at room temperature. Warm up MB Elution Buffer (50-250 μl) per sample depending on elution volume) to 70°C | | | Set shaking water bath to 55°C AS Buffer and TS Buffer may show precipitates during storage. If precipitates are present, heat bottle to 37°C to dissolve the precipitates before use. | - 1. Take 2-5 mm piece of mouse tail and mince into several pieces. Add 250 µl TS Buffer. Note: Cutting/mincing the tissue into smaller pieces can speed up the lysis process. Optional. To improve lysis and reduce incubation time, pulverize sample to fine powder in liquid nitrogen. - 2. Add 20 µl Pro K Solution. Vortex to mix well and incubate at 55°C in a shaking water bath for overnight. If a shaking water bath is not available, vortex the plate every 20-30 min. Lysis time depends on the length of the tail snip and age of the mice. Biopsies should be from 2-4 week old mice. For older mice, overnight incubation may improve yields. - 3. Centrifuge the plate at maximum speed for 5 min to pellet the undigested materials. Transfer the clear lysate on top to a new processing plate with a capacity of 500 µl per well. - **4. Optional:** RNA in the mouse tail will be copurified. If the RNA will interfere with your downsteam application, remove the RNA by adding 5 μl RNase A. Pipette mix for 20 times or vortex for 15 sec. - 5. Add 200 μl AS Buffer to the sample and pipette mix for 20 times or vortex for 15 sec and incubate at 70°C for 10 min. - 6. Bring sample plate to room temperature and add 290 μl 100% ethanol and 10 μl MAG-S1 particles to the sample, and pipette mix for 25 times. Incubate at room temperature for 5 min - ⚠ Shake thoroughly the MAG-S1 particles to fully resuspend before use. - 7. Place the sample plate on the magnetic separation device to magnetize the MAG-S1 particles and wait 3 min or until the beads clear from the solution. - 9. Remove the plate from the magnetic separation device. Add 400 µl HSW Buffer to the sample and pipette mix 25 times or vortex for 30 sec to resuspend the MAG-S1 particles. - ⚠ Complete resuspension of the MAG-S1 particles is crucial for obtaining purity. - 10. Place the sample plate back on the magnetic separation device and wait 5 min or until the magnetic beads clear from solution. - 11. With the plate on the magnetic separation device, remove and discard the supernatant by **pipetting.** 1 Do not disturb the attracted beads while aspirating the supernatant. - 12. Remove the sample plate from the magnetic device. Add 400 μl of 70% ethanol to the sample and pipette mix 20-25 times or vortex for 1 min to resuspend the MAG-S1 particles. Incubate at room temperature for 3 min. - 13. Place the sample plate back on the magnetic separation device and wait 3 min or until the magnetic beads clear from solution. - **14.** With the plate on the magnetic separation device, remove and discard the supernatant by **pipetting.** ① Do not disturb the attracted beads while aspirating the supernatant. - 15. Repeat steps 12-14 for a second 70% ethanol wash. - 16. Dry the beads by incubating for 10 min at room temperature with the plate still on the magnetic separation device. - 17. Remove the plate from the magnetic separation device. Add 50-200 μl MB Elution Buffer or nuclease-free water to the sample and pipette mix 50 times or vortex for 2 min to completely resuspend the MAG-S1 particles. - ⚠ Complete resuspension of the MAG-S1 particles is crucial for obtaining high purity. - **18. Incubate at room temperature for 10 min.** Incubation at 70°C can increase yield. - 19. Place the sample plate back on the magnetic separation device and wait 5 min or until the magnetic beads clear from solution. - 20. Transfer the eluate (cleared supernatant containing the DNA) to a microplate for storage. Store DNA at -20°C ### **Protocol: Total DNA From Cultured Cells - 96 Format** ### **Equipment and Reagents to Be Supplied by User** When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs) from each product supplier. | ☐ Magnetic separa | | er well. (ABgene AB-1127) | |--|--|---------------------------| | Things to do | before starting | | | □ Warm up MB Elu□ Set shaking wate□ AS Buffer and TS | er is prepared according to the instructions on partion Buffer (50-250 µl) per sample depending or bath to 55°C Buffer may show precipitates during storage. dissolve the precipitates before use. | n elution volume) to 70°C | - Prepare the cultured cell suspension according to your starting sample method: - a. Frozen cell samples should be thawed before starting this protocol. Pellet cells by centrifugation. Wash the cells with cold PBS (4°C) and resuspend cells in 180 μ l cold PBS. Proceed with Step 2 of this protocol. - b. For cells grown in suspension, pellet 5×10^6 cells at 1,200 x g in a centrifuge tube. Discard the supernatant, wash the cells once with cold PBS (4°C) and resuspend cells in 180 μ l cold PBS. Proceed with Step 2 of this protocol. - c. For cells grown in a monolayer, harvest the cells by either using a trypsin treatment or cell scraper. Wash cells twice in cold PBS (4°C) and resuspend the cells with 180 μ l cold PBS. Proceed with Step 2 of this protocol. - 2. Add 20 μl Pro K Solution. Vortex or pipette mix thoroughly and incubate at 55°C in a water bath for 10 min. - 3. Transfer samples to a new 96-well deep well plate. - 4. Add 200 μl AS Buffer to the sample and pipette mix for 20 times or vortex for 15 sec and incubate at 70°C for 10 min. - 5. Bring sample plate to room temperature and add 290 μl 100% ethanol and 10 μl MAG-S1 particles to the sample, and pipette mix for 25 times. Incubate at room temperature for 5 min. - ⚠ Shake thoroughly the MAG-S1 particles to fully resuspend before use. - 6. Place the sample plate on the magnetic separation device to magnetize the MAG-S1 particles and wait 3 min or until the beads clear from the solution. - 7. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. ① Do not disturb the attracted beads while aspirating the supernatant. - 8. Remove the plate from the magnetic separation device. Add 400 µl HSW Buffer to the sample and pipette mix 25 times or vortex for 30 sec to resuspend the MAG-S1 particles. - Complete resuspension of the MAG-S1 particles is crucial for obtaining high purity. - 9. Place the sample plate back on the magnetic separation device and wait 5 min or until the magnetic beads clear from solution. - 10. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. Do not disturb the attracted beads while aspirating the supernatant. - 11. Remove the sample plate from the magnetic device. Add 400 μl of 70% ethanol to the sample and pipette mix 25 times or vortex for 1 min to resuspend the MAG-S1 particles. Incubate at room temperature for 3 min. - 12. Place the sample plate back on the magnetic separation device and wait 3 min or until the magnetic beads clear from solution. - 13. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. \(\hat{1}\) Do not disturb the attracted beads while aspirating the supernatant. - 14. Repeat steps 11-13 for a second 70% ethanol wash. - 15. Dry the beads by incubating for 10 min at room temperature with the plate still on the magnetic separation device. \(\frac{1}{2} \) It is critical to completely remove all liquid from each well. - 16. Remove the plate from the magnetic separation device. Add 50-200 μl MB Elution Buffer or nuclease-free water to the sample and pipette mix 50 times or vortex for 2 min to completely resuspend the MAG-S1 particles. - Complete resuspension of the MAG-S1 particles is crucial for obtaining purity. - 17. Incubate at room temperature for 10 min. Incubation at 70°C can increase yield. - 18. Place the sample plate back on the magnetic separation device and wait 5 min or until the magnetic beads clear from solution. - 19. Transfer the eluate (cleared supernatant containing the DNA) to a microplate for storage. Store DNA at -20°C ### **Protocol: Total DNA From Buccal Swabs - 96 Format** ### **Equipment and Reagents to Be Supplied by User** When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs) from each product supplier. | \square Magnetic separation | m deep well plates with a capacity of 1 r
device compatible with 96-well plate
g bucket rotor capable of 4,000 x g | nL per well. (ABgene AB-1127) | |--------------------------------|--|--| | Things to do be | fore starting | | | | prepared according to the instructions of Buffer (50-250 μl) per sample depending that to 55°C | | | \square AS Buffer and TS But | ffer may show precipitates during stor
olve the precipitates before use. | age. If precipitates are present, hear | - 1. Cut off the buccal brush or swab head and place into a well of a 96 well deep well plate. - 2. Add 400 µl TS Buffer to each sample well. - 3. Add 25 μ l Pro K Solution. Vortex or pipette mix thoroughly and incubate at 55°C in a water bath for 45 min. - 4. Centrifuge the plate at 3,000 x g for 10 min. - **5. Transfer 200 μl lysate to a new 96 well deep well plate.** Do not transfer the swabs or other debris. - 6. Add 200 μl AS Buffer to the sample and pipette mix for 20 times or vortex for 15 sec and incubate at 70°C for 10 min. - Bring sample plate to room temperature and add 290 µl 100% ethanol and 10 µl MAG-S1 particles to the sample, and pipette mix for 25 times. Incubate at room temperature for 5 min. - \triangle Shake thoroughly the MAG-S1 particles to fully resuspend before use. - 8. Place the sample plate on the magnetic separation device to magnetize the MAG-S1 particles and wait 3 min or until the beads clear from the solution. - 9. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. Do not disturb the attracted beads while aspirating the supernatant. - 10. Remove the plate from the magnetic separation device. Add 400 μl HSW Buffer to the sample and pipette mix 25 times or vortex for 30 sec to resuspend the MAG-S1 particles. - ⚠ Complete resuspension of the MAG-S1 particles is crucial for obtaining high purity. - 11. Place the sample plate back on the magnetic separation device and wait 5 min or until the magnetic beads clear from solution. - 12. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. ① Do not disturb the attracted beads while aspirating the supernatant. - 13. Remove the sample plate from the magnetic device. Add 400 µl of 70% Ethanol to the sample and pipette mix 25 times or vortex for 1 min to resuspend the MAG-S1 particles. Incubate at room temperature for 3 min. - 14. Place the sample plate back on the magnetic separation device and wait 3 min or until the magnetic beads clear from solution. - 15. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting. ① Do not disturb the attracted beads while aspirating the supernatant. - 16. Repeat steps 13-15 for a second 70% ethanol wash. - 17. Dry the beads by incubating for 10 min at room temperature with the plate still on the magnetic separation device. - 18. Remove the plate from the magnetic separation device. Add 50-200 µl MB Elution Buffer or nuclease-free water to the sample and pipette mix 50 times or vortex for 2 min to completely resuspend the MAG-S1 particles. - \triangle Complete resuspension of the MAG-S1 particles is crucial for obtaining purity. - **19. Incubate at room temperature for 10 min.** Incubation at 70°C can increase yield. - 20. Place the sample plate back on the magnetic separation device and wait 5 min or until the magnetic beads clear from solution. - 21. Transfer the eluate (cleared supernatant containing the DNA) to a microplate for storage. Store DNA at -20°C # **Troubleshooting guide** Please use this guide to troubleshoot any problems that may arise. For further assistance, please contact technical support via: Phone: 1-855-262-4246 (in US), outside US, 1-301-302-0144 Email: support@magbiogenomics.com | Symptoms | Possible Causes | Comments | |--|---|---| | Low DNA Yields | Incomplete resuspension of MAG-S1 particles | Resuspend MAG-S1 particles by vortexing vigorously before use. | | | Loss of MAG-S1 particles during operation | Avoid disturbing the MAG-S1 particles during aspiration of supernatant. | | | DNA remains bound to the MAG-S1 particles | Increase elution volume and incubate for 15 minutes. Pipet mix 50 to 100 times. | | | Ethanol is not added into
HSW Buffer | Add absolute 100% Ethanol to HSW Buffer (see page 2 for instructions). | | MAG-S1 particles
do not completely
clear from solution | Too short of magnetizing time | Increase collection time on the magnet. | | Problems in
downstream
applications | Insufficient DNA in starting material | Use more starting material. | | | Ethanol carry-over | Dry the MAG-S1 particles completely before elution. | # **Ordering Information** | Product Description | Catalog No. | Preps | |----------------------------------|-------------|-------| | HighPrep™ Blood & Tissue DNA Kit | HPBTS-D96 | 96 | | HighPrep™ Blood & Tissue DNA Kit | HPBTS-D96X4 | 384 | www.magbiogenomics.com